Abstract
Based on a Riccati equation and a symbolic computation system-Maple, a generalized Riccati equation expansion method is presented for constructing soliton-like solutions and periodic form solutions for some nonlinear evolution equations (NEEs) or NEEs with variable coefficients. Compared with most of the existing tanh methods, the extended tanh-function method, the modified extended tanh-function method and the generalized hyperbolic-function method, the proposed method is more powerful. We study a (2+1)-dimensional general nonintegrable KdV equation, a KdV equation with variable coefficients. As a result, rich new families of exact solutions, including the non-travelling wave's and coefficient functions' soliton-like solutions, singular soliton-like solutions, periodic form solutions, are obtained. When setting the arbitrary functions in some solutions be equal to special constants or special functions, the solitary wave solutions can be recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.