Abstract
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recently, a novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamic domain wall (DW) under a strong DMI and find that the DMI induces an annihilation of topological vertical Bloch lines (VBLs) by lifting the four-fold degeneracy of the VBL. As a result, velocity reduction originating from the Walker breakdown is completely suppressed, leading to a soliton-like constant velocity of the DW. Furthermore, the strength of the DMI, which is the key factor for soliton-like DW motion, can be quantified without any side effects possibly arising from current-induced torques or extrinsic pinnings in magnetic films. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.