Abstract

We explore the coherent thermal transport sustained by solitons through a long Josephson junction, as a thermal gradient across the system is established. We observe that a soliton causes the heat current through the system to increase. Correspondingly, the junction warms up in correspondence of the soliton, with temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed setup at a bath temperature Tbath = 4.2 K. The thermal effects on the dynamics of the soliton are also discussed. Markedly, this system inherits the topological robustness of the solitons. In view of these results, the proposed device can effectively find an application as a superconducting thermal router in which the thermal transport can be locally mastered through solitonic excitations, which positions can be externally controlled through a magnetic field and a bias current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.