Abstract
By using the optical add-drop filter which is formed by a microring resonator, and after a dark soliton pulse is fed into an input port of the add-drop filter, the orthogonal soliton pair (dark and bright solitons) can be formed within the system and detected simultaneously at the output ports. Under the resonant condition, the conversion of dark and bright solitons corresponding to the left-hand and right-hand soliton orientations can be generated and seen. Whenever a soliton (photon) is absorbed by an object, an angular momentum of either +ℏ or -ℏ is imparted to the object, in which two possible soliton states known as soliton spins are exhibited and confirmed by the helical phase presentation. In application, the train of orthogonal solitons, i.e. many solitons (photons) with slightly different wavelengths can be generated by using the modified add-drop filter, which is available for many soliton spins and long distance spin transport investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.