Abstract

In this research, the He‐Laplace algorithm is extended to generalized third order, time‐fractional, Korteweg‐de Vries (KdV) models. In this algorithm, the Laplace transform is hybrid with homotopy perturbation and extended to highly nonlinear fractional KdVs, including potential and Burgers KdV models. Time‐fractional derivatives are taken in Caputo sense throughout the manuscript. Convergence and error estimation are confirmed theoretically as well as numerically for the current model. Numerical convergence and error analysis is also performed by computing residual errors in the entire fractional domain. Graphical illustrations show the effect of fractional parameter on the solution as 2D and 3D plots. Analysis reveals that the He‐Laplace algorithm is an efficient approach for time‐fractional models and can be used for other families of equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.