Abstract

Using a femtosecond Ti:sapphire laser operating at a wavelength of 810nm we have demonstrated infrared generation in photonic crystal fibre at distinct wavelengths which can be attributed to the soliton self-frequency shift effect. The maximum observed shift produced spectra centred at 1260nm and the frequency-shifted light accounted for up to 80% of the fibre output power. We show that the shifts can be explained by the dispersion properties of the fundamental and higher-order waveguide modes of the fibre.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.