Abstract

Raman soliton phenomena in photonic crystal fibers are shown to allow efficient tunable frequency shifting of sub-10-fs laser pulses. Soliton self-frequency shift in a photonic-crystal fiber with a core diameter less than 2 μm is used to transform the spectrum of a 6-fs 2-nJ Ti: sapphire-laser pulse, dominated by a 670-nm peak, into a spectrum featuring a well-resolved intense spectral component centered at 1064 nm, which is ideally suited as a seed for Nd: YAG- and ytterbium-based laser devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.