Abstract

Rains of solitons constitute a class of nonlinear dynamics of dissipative soliton ensembles that we briefly reported in Opt. Express 17, 11776 (2009) from a fiber laser experiment. The existence of a relatively intense noisy background together with several tens of soliton pulses aggregated in a condensed soliton phase constitutes a necessary condition for their appearance. New soliton pulses form spontaneously from the background fluctuations and drift until they reach the condensed soliton phase. We here relate in detail the experimental conditions under which soliton rains manifest and their key features, describe related dynamics observed in their vicinity, and propose an explanation for soliton rain dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.