Abstract

One of the critical problems in achieving a real practical all-optical switching devices is the requirement for a strong material nonlinearity. A strong material nonlinearity is crucial in order to achieve a low switching power. However, silicon-based all-optical switches require extremely high switching power due to its relatively weak nonlinear optical properties. To overcome this limitation, we have designed an all-optical switch configuration based on silicon microring resonator structure and demonstrated the switching operation based on the nonlinear effects induced by a soliton pulse. The soliton pulse induces free-carrier concentration through two-photon absorption (TPA) effect and this leads to enhance the refractive index change and enhance the nonlinearity of the silicon. Thus, the silicon microring resonator alters the nonlinear phase shift which is required for switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.