Abstract

Abstract A microring resonator (MRR) and an add/drop devices are presented to generate picosecond solitonic pulse and signal as multichannel localized wavelengths, applicable for WDM-based free space optics (FSO) communication. A Gaussian pulse is inputted to the first ring resonator of the proposed system. Because of the nonlinear Kerr effect, chaotic signals are created. The second MRR filters the generated signals and shape solitonic pulses, where the accurate FWHM of 20 ps with intensity of 2.45 W are obtained. The add/drop device is applied for tuning the solitonic pulses. Results indicate that a range of solitonic wavelengths from 1550 nm to 1600 nm are obtained, where FSR and FWHM are 144 pm and 5 pm, respectively. Finally, performance of the proposed MRR system is evaluated in terms of bit error rate (BER) and Q factor. In the analysis, the proposed solitonic pulse is compared to conventional counterparts. Using the proposed MRR system, BER and Q factor of WDM-based FSO are considerably improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call