Abstract

During the last decade, the development of supercontinua (SC) sources has emerged as an interesting and active research field. This is largely due to new technological developments, which have allowed more controlled and accessible generation of supercontinua. In this paper we study the dynamics of Raman soliton during supercontinuum process when the pulse experiences initially normal group velocity dispersion with a negative dispersion. In this situation, the blue components of the spectrum form a Raman soliton moves faster than the input pulse because of Raman induced frequency downshifting ceases to occur as the spectrum of Raman soliton approaches the zero dispersion point. From this study one can distinguish that the first order bright soliton pulse depends on two important bases: first depends on the contents of the optical fibers and building method, where it is accomplished by making a balance between the dispersion effect and the nonlinear effect. The second depends on the parameters for mode and the starting point of the pulse shape inside the fiber such as the pulse width, normalized propagation distance and the existence of any nonlinear external effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.