Abstract

Sequences of ultrashort pulses form the basis of extremely precise laser applications ranging from femtosecond spectroscopy, to material microprocessing, to biomedical imaging. Dynamic patterns of temporal solitons—termed “soliton molecules”—inside mode-locked cavities provide yet unexplored means for generating reconfigurable arrangements of ultrashort pulses. Here, we demonstrate the external control of solitonic bound states in widespread erbium-doped fiber lasers via direct electronic modulation of the semiconductor pump source. This straightforward approach allows for switching between discrete soliton doublet states of picosecond separations, employing and relying on laser-intrinsic soliton interactions. We analyze the externally induced dynamics based on real-time switching data acquired by time-stretch dispersive Fourier transform spectroscopy and identify a universal bound-state formation mechanism different from broadly considered models. Owing to the ease of implementation and its intrinsic tunability, our control scheme is readily applicable to various laser platforms enabling, e.g., rapid multipulse measurements and tailored nonlinear light–matter interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.