Abstract

Dipolar interactions support the formation of intersite soliton molecules in a stack of quasi-one-dimensional (quasi-1D) traps. We show that the stability and properties of individual solitons and soliton molecules in such a geometry crucially depend on the interplay between contact and dipolar interactions. In particular, two different quasi-1D soliton regimes are possible: a one-dimensional (1D) soliton characterized by purely repulsive dipole-dipole interactions (DDI) and a three-dimensional (3D) soliton for which a sufficiently large dipole moment renders the DDI attractive. Furthermore, we find that in contrast to the dimers of polar molecules the soliton dimers exhibit a nontrivial behavior of the elementary excitations that stems from the competition between onsite and intersite DDI. Finally, we prove the existence of soliton trimers in a regime where molecular trimers do not occur. We demonstrate that the soliton molecules that we report are well feasible under realistic experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call