Abstract

The effects of long-range intermolecular interactions on characteristic features of soliton bound states, consisting of localized excitons and polaritons in molecular crystals interacting with a high-intensity optical field, are investigated. Analytical solutions to the resulting modified nonlinear Schr\"odinger equation are obtained in terms of elliptic-type bright- and dark-soliton structures, which are assumed to correspond to periodic trains of pulse solitons and kink solitons respectively. Long-range intermolecular interactions are shown to renormalize the exciton-polariton interaction strength, hence generating a significantly huge increase in amplitudes of the bright solitons but a decrease in amplitudes of dark solitons. Results suggest that long-range intermolecular interactions hold relevant roles, both qualitatively and quantitatively, in the formation of amplitude and phase modulated strongly nonlinear exciton-polariton solitary-wave patterns, as well as in the energy transfer along molecular crystals interacting with high-intensity optical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call