Abstract

Three‐coupled discrete nonlinear Schrödinger equations, which describe the dynamics of the three hydrogen bonding spines in the alpha helical proteins with the interspine coupling at the discrete level, are investigated. Binary Bell polynomials are applied to construct the bilinear forms and bilinear Bäcklund transformation of those equations. Propagation characteristics and interactions of the bound‐state solitons are discussed. Bound states of two and three bright solitons arise when all of them propagate in parallel. Elastic interaction between the bound‐state solitons and one bright soliton is given. Increase of the dipole‐dipole interaction energy can lead to the increase of the soliton velocity, that is, the one‐interaction period becomes shorter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.