Abstract

Under investigation in this paper is a variable-coefficient generalized dispersive water-wave system, which can simulate the propagation of the long weakly non-linear and weakly dispersive surface waves of variable depth in the shallow water. Under certain variable-coefficient constraints, by virtue of the Bell polynomials, Hirota method and symbolic computation, the bilinear forms, one- and two-soliton solutions are obtained. Bäcklund transformations and new Lax pair are also obtained. Our Lax pair is different from that previously reported. Based on the asymptotic and graphic analysis, with different forms of the variable coefficients, we find that there exist the elastic interactions for u, while either the elastic or inelastic interactions for v, with u and v as the horizontal velocity field and deviation height from the equilibrium position of the water, respectively. When the interactions are inelastic, we see the fission and fusion phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.