Abstract

We show through numerical simulations that silicon waveguides can be used to create a supercontinuum extending over 400 nm by launching femtosecond pulses as higher-order solitons. The physical process behind continuum generation is related to soliton fission, self-phase modulation, and generation of Cherenkov radiation. In contrast with optical fibers, stimulated Raman scattering plays little role. As low-energy (approximately 1 pJ) pulses and short waveguides (<1 cm) are sufficient for continuum generation, the proposed scheme should prove useful for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.