Abstract

We investigate the dynamics of a lattice soliton on a monatomic chain in the presence of damping and external forces. We consider Stokes and hydrodynamical damping. In the quasi-continuum limit the discrete system leads to a damped and forced Boussinesq equation. By using a multiple-scale perturbation expansion up to second order in the framework of the quasi-continuum approach we derive a general expression for the first-order velocity correction which improves previous results. We compare the soliton position and shape predicted by the theory with simulations carried out on the level of the monatomic chain system as well as on the level of the quasi-continuum limit system. For this purpose we restrict ourselves to specific examples, namely potentials with cubic and quartic anharmonicities as well as the truncated Morse potential, without taking into account external forces. For both types of damping we find a good agreement with the numerical simulations both for the soliton position and for the tail which appears at the rear of the soliton. Moreover we clarify why the quasi-continuum approximation is better in the hydrodynamical damping case than in the Stokes damping case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.