Abstract

We use the one-dimensional (1D) Gross-Pitaevskii equation to investigate the dynamical evolution of a dilute repulsive Bose-Einstein condensate (BEC) confined in an elongated static nonharmonic trap and stirred by an oscillating Gaussian obstacle moving at uniform speed in alternate direction. Direct numerical solutions of this equation show that above a critical obstacle velocity, the motion of the obstacle creates gray solitons and phonons. At first, when the velocity of the obstacle increases, the dissipation also increases. But the dissipation reaches a maximal value and then decreases dramatically and vanishes at high obstacle velocities. Our results at low obstacle velocities are similar to those previously obtained experimentally and by simulations in the case of vortice and phonon production in 3D and 2D trapped repulsive BEC's. But at high obstacle velocities, we show that the quasi-1D trapped repulsive BEC behaves as a quasisuperfluid medium with disappearance of gray soliton and phonon excitations. This extends previous results and provides the main dependence of the phenomenon on the obstacle characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.