Abstract
A two-layer inviscid incompressible fluid system of intermediate depth is considered. A multiple-scales perturbation technique is applied to the basic equations and boundary conditions for a two-layer fluid system to derive a system of weakly nonlinear partial integrodifferential equations governing the resonant interaction between a surface gravity wave packet and an internal gravity wave at an intermediate depth, providing a bridge between the existing shallow and deep fluid theories. The convolution integral term in these equations accounts for the dispersion in the lower-layer fluid. An iterative fast Fourier transform scheme is developed to find solitary wave solutions to this system of equations. The overtaking collision of two pairs of solitary waves, simulated using a spectral method, is found to be inelastic. It is found that the amplitude of the solitary waves changes slightly after the collision. The phase shifts these solitary waves undergo was calculated numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.