Abstract

We demonstrate "hidden solvability" of the nonlinear Schrödinger (NLS) equation whose nonlinearity coefficient is spatially modulated by Hermite-Gaussian functions of different orders and the external potential is appropriately chosen. By means of an explicit transformation, this equation is reduced to the stationary version of the classical NLS equation, which makes it possible to use the bright and dark solitons of the latter equation to generate solitary-wave solutions in our model. Special kinds of explicit solutions, such as oscillating solitary waves, are analyzed in detail. The stability of these solutions is verified by means of direct integration of the underlying NLS equation. In particular, our analytical results suggest a way of controlling the dynamics of solitary waves by an appropriate spatial modulation of the nonlinearity strength in Bose-Einstein condensates, through the Feshbach resonance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.