Abstract

In the present work, employing the nonlinear equations of an incompressible, isotropic and elastic thin tube and the approximate equations of an incompressible inviscid fluid, the propagation of weakly nonlinear waves, in such a medium is studied through the use of the modified multiple expansion method. It is shown that the evolution of the lowest order (first-order) term in the perturbation expansion may be described by the Korteweg-de Vries (KdV) equation. The governing equation for the second-order terms and the localized travelling wave solution for these equations are also obtained. The applicability of the present model to flow problems in arteries is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.