Abstract

For an unmagnetized multicomponent dusty plasma, the effects of non-thermal electron distribution, ion temperature and two oppositely charged dust grains are incorporated in the study of arbitrary amplitude solitary waves. An energy-like integral equation involving Sagdeev potential is derived, and the existence, formation and basic properties of solitons are studied. It is also found a definite interval for the Mach number for which solitary waves exist and depends sensitively upon the population of fast or non-thermal electrons present. Our results should be useful to understand the properties of localized electrostatic disturbances that may occur in space dusty plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.