Abstract
Abstract The propagation characteristics of solitary wave in a degenerate plasma in the presence of Landau-quantised magnetic field and heavy negative ion are studied. The nature of solitary wave in such plasma under the influence of magnetic quantisation and the concentration of both electrons and negative ions, as well as in the presence of degenerate temperature, are studied with the help of a time-independent analytical scheme of the solution of Zakharov–Kuznetsov equation. The electron density, as well as the magnetic quantisation parameter, has an outstanding effect on the features of solitary wave proliferation in such plasma. Interestingly, for any fixed electron density, the magnetic quantisation parameter has an equal control on the maximum height and dispersive properties of the solitary wave. Toward higher temperatures and higher magnetic fields, the width of the solitary wave decreases. For a lower magnetic field, the maximum amplitude of the solitary wave decreases rapidly at higher values of degenerate temperature and negative ion concentration; however, at a lower value of degenerate temperature, the maximum amplitude increases with increasing negative ion concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.