Abstract

The present paper is the first part of a project devoted to the fractional nonlinear Schrödinger (fNLS) equation. It is concerned with the existence and numerical generation of the solitary-wave solutions. For the first point, some conserved quantities of the problem are used to search for solitary-wave solutions from a constrained critical point problem and the application of the concentration-compactness theory. Several properties of the waves, such as the regularity and the asymptotic decay in some cases, are derived from the existence result. Some other properties, such as the monotone behavior and the speed-amplitude relation, will be explored computationally. To this end, a numerical procedure for the generation of the profiles is proposed. The method is based on a Fourier pseudospectral approximation of the differential system for the profiles and the use of Petviashvili’s iteration with extrapolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.