Abstract

Traveling waves of a class of higher-order traffic flow models with viscosity are studied with the reduction perturbation method, which leads to the well-known Kortweg–de Vries equation and the approximate solitary wave solution to the model. The fifth-order accuracy weighted essentially nonoscillatory scheme is adopted for comparison between the analytical and numerical results. The numerical tests show that the solitary wave evolves with little deformation of its profile and that a globally perturbed equilibrium traffic state is able to evolve into a profile similar to that of a solitary wave, which is identified by the same total number of vehicles on the ring road. These results are compared with those in the literature and demonstrate that the approximation to the model is more accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call