Abstract
A time-domain higher-order boundary element method with fully nonlinear boundary conditions is developed to simulate the slamming of an asymmetric wedge entering freely and obliquely into a solitary wave in three degrees of freedom (3DOF). A third order analytical solution based on the Korteweg-de Vries equation is used to simulate the solitary wave incident boundary conditions. In the numerical model of slamming, a stretched coordinate system is applied to maintain numerical accuracy and stability at the initial stage. The thin long jet layer is generated along the wedge surface by assuming linear variation of the jet layer potential. A rotation scheme of the stretched coordinate system is adopted to avoid fluid particle leaving or entering the wedge surface. Some auxiliary functions are employed to decouple the intercoupling motions in 3DOF. The present model is verified by comparing with the published numerical results. Various parametric studies are carried out. Detailed results through the free surface, pressure distribution, accelerations, and velocities are provided to show the slamming effects, and their physical implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.