Abstract

This paper presents a numerical model for long-wave interaction with vertically walled porous structures. Based on depth-integrated equations of motion, the model is suitable for weakly nonlinear, weakly dispersive transient waves propagating in both variable-depth open water and porous regions. Comparisons with experimental data for problems with one horizontal dimension show that a single choice of empirical parameters for hydraulic conductivity gives accurate numerical predictions for various sizes of rocks used in the construction of porous breakwaters. A rigorous experimental comparison of a porous breakwater gap shows that the numerical model is excellent in predicting the waveform and phase of the transformed wave. In this paper attention is focused on the reflection, transmission, and diffraction of solitary waves by a porous breakwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call