Abstract

The equation of motion for a bead in a chain of uncompressed elastic beads in contact that interact via the potential V(delta) approximately delta( n), n>2, delta being overlap, supports solitary waves and does not accommodate sound propagation [V. Nesterenko, J. Appl. Mech. Tech. Phys. 5, 733 (1983)]. We present an iteratively exact solution to describe the solitary wave as a function of material parameters and a universal, infinite set of coefficients, which depend only on n. We compute any arbitrary number of coefficients to desired accuracy and show that only the first few coefficients of our solution significantly improves upon Nesterenko's solution. The improved solution is a necessary step to develop a theoretical understanding of the formation of secondary solitary waves [M. Manciu, et al., Phys. Rev. E 63, 011614 (2001)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.