Abstract

PurposeThe paper aims to apply a modified version of the MPS method to a double-dam-breaking test in which high dispersion zones and high natural clusterization zones are present, such as when the water column collapses into two sides and the two solitary waves collide, respectively.Design/methodology/approachThe work takes advantage of the mixed source term from the cheaper computational version of the moving particle semi-implicit (MPS) method to reduce one step from the MPS classical algorithm. The proposed test can be successfully simulated by applying modifications to the variance parameter in the Laplacian operator and gradient model.FindingsThe results show stable behavior in dispersion and clusterization zones. Also, the collision and merging produced by solitary waves was successfully simulated.Research limitations/implicationsThe main limitation in this work was the development of a comparison between the obtained results and the simulations with the original cheaper computational version of the MPS, this limitation is due to the overestimation of inter particle repulsive forces from its gradient model.Practical implicationsThe application of solitary waves is of paramount importance in a number of applications, and this stems from the fact that the interaction of solitary waves with ships and other floating structures could generate highly deformed and complex free surface flows.Social implicationsFor future work, the modified version of the MPS method can be applied in flow over sill base simulations, in close and open channels, and in simulating breaking waves to determine impact pressures by using solitary wave propagation.Originality/valueThe simulation of interaction of large groups of particles as in the case when two solitary waves collide could cause severe instability problems in pressure, causing the computer analysis to stop. MPS classical algorithm takes into account an explicit step that, in this case, may provoke the problem. For this reason, the cheaper version of MPS method is used to correctly simulate solitary wave interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.