Abstract

We investigate solitary vortex evolution in two-dimensional Bose-Einstein condensates based on the Gross-Pitaevskii equation model. Through the variational method, together with the novel Gaussian ansatz incorporating asymmetric perturbation effects, we arrive at the analytical solitary vortex solution with two typical forms: a symmetric quasi-stable solution under certain parametric settings and a diverging propagation case arising from an initial asymmetric perturbation. The derived pictorial evolutionary patterns of the solitary vortices are compared with those from a pure numerical analysis, and by identifying the key qualitative features, we show the applicability of the theoretical treatment presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.