Abstract

The formation of electrostatic solitary structures is analysed for a magnetised plasma with ion and electron thermal anisotropies. The ion thermal anisotropy is modelled with the help of the Chew–Goldberger–Low (CGL) double adiabatic equations of state while the electrons are treated as inertia-less species with an anisotropic bi-Maxwellian velocity distribution function. A negative electron thermal anisotropy is found to help form large amplitude solitary structures which are in agreement with observational data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.