Abstract

We have performed numerical and experimental studies of the flow in a large aspect ratio Couette-Taylor system with a rotating inner cylinder and a fixed radial temperature gradient. The base flow state is a superposition of an azimuthal flow induced by rotation and an axial large convective cell induced by the temperature gradient. For a relatively large temperature gradient, the rotation rate of the inner cylinder destabilizes the convective cell to give rise to travelling wave pattern through a subcritical bifurcation. This wave pattern is associated with a temperature mode and it consists of helical vortices travelling in the annulus. In a small range of the rotation rate, helical vortices have longitudinal meandering leading to the formation of kinks randomly distributed, leading to spatio-temporal disordered patterns. The flow becomes regular for a large interval of rotation rate. The friction, the momentum and the heat transfer coefficients are computed and found to be independent of the heating direction. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (part 1)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call