Abstract
Co-sensitized solar cells have gained more attention due to the ability of energy conversion process by absorbing photons from wide range of the solar spectrum including visible and near-infrared region. TiO2 electrodes were co-sensitized with PbS/CdS core-shell quantum dots and N719 dye. PbS/CdS/N719 dye-sensitized solar cells were fabricated with poly(ethylene oxide) based solid polymer electrolyte consisting iodide/triiodide redox couple. The iodide ion conductivity of the electrolyte was enhanced by incorporating a binary iodide salt mixture of different size cations, tetrapropylammonium iodide and potassium iodide. The performance of the solar cell was further enhanced by the incorporating TiO2 P90 nanofiller in the electrolyte. The best solid-state solar cell showed a significantly higher efficiency of 4.41 % with a short-circuit current density of 8.41 mA cm−2, open-circuit voltage of 748.3 mV and a high fill factor of 70.16 % under the simulated light of 100 mW cm−2 with AM 1.5 filter. This is the first report describing the efficiency enhancement in a solid-state dye sensitized solar cell based on a solid polymer electrolyte incorporating a binary cation iodide salt and TiO2 nanofiller and a photoanode co-sensitized with PbS/CdS quantum dots and N719 dye demonstrating the cumulative effect by the mixed cation effect and co-sensitization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.