Abstract

In this work, experiments were made in which gyromagnetic nonlinear transmission line (NLTL) operates as a peak power amplifier of the input pulse. At such an operating regime, the duration of the input pulse is close to the period of generated oscillations, and the main part of the input pulse energy is transmitted only to the first peak of the oscillations. Power amplification is achieved due to the voltage amplitude of the first peak across the NLTL output exceeding the voltage amplitude of the input pulse. In the experiments, the input pulse with an amplitude of 500 kV and a half-height pulse duration of 7 ns is applied to the NLTL with a natural oscillation frequency of ∼300 MHz. At the output of the NLTL in 40 Ω coaxial transmission line, the pulse amplitude is increased to 740 kV and the pulse duration is reduced to ∼2 ns, which correspond to power amplification of the input pulse from ∼6 to ∼13 GW. As a source of input pulses, a solid-state semiconductor opening switch generator was used, which allowed carrying out experiments at pulse repetition frequency up to 1 kHz in the burst mode of operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call