Abstract

We demonstrate that incorporation of a redox-active benzoquinoid ligand into a one-dimensional chain compound can give rise to a material that exhibits simultaneous solid-state redox switching of optical, magnetic, and electronic properties. Metalation of the ligand 4,5-bis(pyridine-2-carboxamido)-1,2-catechol ((N,O)LH4) with Mn(III) affords the chain compound Mn((N,O)L)(DMSO). Structural and spectroscopic analysis of this compound show the presence of Mn(II) centers bridged by (N,O)L(2-) ligands, resulting partially from a spontaneous ligand-to-metal electron transfer. Upon soaking in a solution of the reductant Cp2Co, Mn((N,O)L)(DMSO) undergoes a ligand-centered solid-state reduction to [Mn((N,O)L)](-), as revealed by a suite of techniques, including Raman and X-ray absorption spectroscopy. The ligand-based reduction engenders a dramatic modulation of the physical properties of the chain compound. An electrochromic response, evidenced by a color change from dark green to dark purple is accompanied by a nearly 40-fold increase in magnetic coupling strength, from J = -0.38(1) to -15.6(2) cm(-1), and a 10,000-fold increase in electronic conductivity, from σ = 2.33(1) × 10(-12) S/cm (Ea = 0.64(1) eV) to 8.61(1) × 10(-8) S/cm (Ea = 0.39(1) eV). Importantly, the chemical reduction is reversible: treatment of the reduced compound with [Cp2Fe](+) regenerates the oxidized chain. Taken together, these results highlight the ability of benzoquinoid ligands to facilitate solid-state ligand-based redox reactions in nonporous coordination solids, giving rise to reversible switching of optical properties, magnetic exchange interactions, and electronic conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call