Abstract

Niobium films were deposited on silicon carbide by chemical vapor deposition using niobium chloride and hydrogen at a temperature range of 900–1300°C. The solid-state reactions between the deposited niobium and silicon carbide matrix were studied by examining the obtained films using X-ray diffraction and energy dispersion spectroscopy. The results indicated that niobium silicides could be formed at the beginning, which blocked further reactions between carbon and niobium to form niobium carbides. When the deposition temperature was increased, silicon would diffuse outward, which allowed the formation of niobium carbides. The reaction process and mechanism are discussed based on the thermodynamics and kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.