Abstract

The solid-state phase behaviour of lyophilised n-dodecyl-β- d-glucoside (β-C 12G 1), n-dodecyl-β- d-maltoside (β-C 12G 2) and n-dodecyl-β- d-maltotrioside (β-C 12G 3) has been investigated by differential scanning calorimetry (DSC) and X-ray techniques. For β-C 12G 1, lyophilisation results in a formation of a crystalline anhydrate. The lamellar spacing (37 Å) is consistent with an alkyl chain packing in which the chains are not interdigitated. At 80 °C, the material melts into a lamellar liquid crystal with a lamellar spacing of 32 Å, which suggests that the non-interdigitated chain packing of the crystalline state is retained in the liquid crystal. In contrast, lyophilisation of β-C 12G 2 and β-C 12G 3 results in the formation of a glassy state, best described as a frozen version of the lamellar liquid crystal. For β-C 12G 2, the lamellar spacing in the glass and liquid crystal suggests interdigitation of the alkyl chains. The glass transition temperature was found to be 65 °C for β-C 12G 2 and 100 °C for β-C 12G 3, which compares favourably with the glass transition of the parent carbohydrates. A second crystalline modification of β-C 12G 1 was prepared by precipitation from an aqueous solution at temperatures below the Krafft point (38 °C). For this modification, the lamellar distance (24 Å) is consistent with interdigitated alkyl chains. At 50 °C, the crystalline material melts into a liquid crystalline phase. The material also readily loses water and rapidly re-crystallises to the anhydrate. The amount of water lost upon drying is consistent with the idea that the material is a monohydrate of β-C 12G 1. The drying and re-crystallisation processes give rise to ‘pre-transitions’ in the DSC thermograms and illustrate the importance of careful control of water in any analysis of the phase behaviour of alkylglycosides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call