Abstract

The first comprehensive solid‐state nuclear magnetic resonance (NMR) characterization of geminal alane‐phosphane frustrated Lewis pairs (Al/P FLPs) is reported. Their relevant NMR parameters (isotropic chemical shifts, direct and indirect 27Al‐31P spin‐spin coupling constants, and 27Al nuclear electric quadrupole coupling tensor components) have been determined by numerical analysis of the experimental NMR line shapes and compared with values computed from the known crystal structures by using density functional theory (DFT) methods. Our work demonstrates that the 31P NMR chemical shifts for the studied Al/P FLPs are very sensitive to slight structural inequivalences. The 27Al NMR central transition signals are spread out over a broad frequency range (>200 kHz), owing to the presence of strong nuclear electric quadrupolar interactions that can be well‐reproduced by the static 27Al wideband uniform rate smooth truncation (WURST) Carr‐Purcell‐Meiboom‐Gill (WCPMG) NMR experiment. 27Al chemical shifts and quadrupole tensor components offer a facile and clear distinction between three‐ and four‐coordinate aluminum environments. For measuring internuclear Al⋅⋅⋅P distances a new resonance‐echo saturation‐pulse double‐resonance (RESPDOR) experiment was developed by using efficient saturation via frequency‐swept WURST pulses. The successful implementation of this widely applicable technique indicates that internuclear Al⋅⋅⋅P distances in these compounds can be measured within a precision of ±0.1 Å.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.