Abstract

The HIV-1 fusion peptide serves as a useful model system for understanding viral/target cell fusion, at least to the lipid-mixing stage. Previous solid-state NMR studies have shown that the membrane-bound HIV-1 fusion peptide adopts an extended conformation in a lipid mixture close to that of host cells of the virus. In the present study, solid-state NMR REDOR methods were applied for detection of oligomeric beta strand structure. The samples were prepared under fusogenic conditions and contained equimolar amounts of two peptides, one with selective [(13)C]carbonyl labeling and the other with selective [(15)N]amide labeling. In the REDOR measurements, observation of reduced (13)C intensity due to hydrogen-bonded amide (15)N provides strong experimental evidence of oligomer formation by the membrane-associated peptide. Comparison of REDOR spectra on samples that were labeled at different residue positions suggests that there are both parallel and antiparallel arrangements of peptide strands. In the parallel arrangement, interpeptide hydrogen bonding decreases toward the C-terminus, while in the antiparallel arrangement, hydrogen bonds are observed along the entire length of residues which was probed (Gly-5 to Gly-16). For the parallel arrangement, these observations are consistent with the model in which the apolar N-terminal and central regions of the peptides penetrate into the membrane and hydrogen bond with one another while the polar C-terminus of the peptide is outside the membrane and hydrogen bonds with water. These measurements show that, at least at the end state of fusion, the peptide can adopt an oligomeric beta strand structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.