Abstract

Proton dynamics in polymer electrolyte membranes are multifaceted processes, and the relative contributions of various mechanisms can be difficult to distinguish. Judicious choices of model systems can aid in understanding the critical steps. In this study, we characterize anion dynamics in a series of benzimidazole-alkyl phosphonate salts, and compare those dynamics to a membrane prototype, built on a decane backbone. The series of salts are characterized, using high resolution (1)H solid-state magic angle spinning (MAS) NMR, DQ MAS NMR, and (31)P centreband-only detection of exchange (CODEX) NMR spectroscopy, to determine the influence of the nature of the alkyl group on the rates and geometries of anion dynamics, and overall proton exchange processes. The alkyl group is shown to slow the correlation times for anion reorientation, when compared at ambient temperature. However, it is also apparent that the lowered lattice energy of the salt lowers the activation energy and allows good dynamics at intermediate temperatures in both the benzimidazolium ethylphosphonate and in the HBr adduct of 1,10-(1-H-imidazol-5-yl)decanephosphonic acid (Imi-d-Pa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.