Abstract

Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base (RPSB). Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics. Numerous microbial rhodopsins have been discovered, contributing to diverse functions and colors. Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins. This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field. We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.