Abstract
In recent years, solid-state NMR spectroscopy has evolved into an important characterization tool for the study of solid catalysts and chemical processes on their surface. This interest is mainly triggered by the need of environmentally benign organic transformations (“green chemistry”), which has resulted in a large number of new catalytically active hybrid materials, which are organized on the meso- and nanoscale. Typical examples of these catalysts are supported homogeneous transition metal catalysts or transition metal nanoparticles (MNPs). Solid-state NMR spectroscopy is able to characterize both the structures of these materials and the chemical processes on the catalytic surface. This article presents recent trends both on the characterization of immobilized homogeneous transition metal catalysts and on the characterization of surface species on transition metal surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.