Abstract

AbstractSolid-state nanopores are nm sized apertures formed in thin synthetic membranes. These single molecule sensors have been used in a variety of biophysical and diagnostic applications and serve as a potential candidate in the development of cost-effective, next generation DNA sequencing technologies, critical to furthering our understanding of inheritance, individuality, disease and evolution. The versatility of solid-state nanopore technology allows for both interfacing with biological systems at the nano-scale as well as large scale VLSI integration promising reliable, affordable, mass producible biosensors with single molecule sensing capabilities. In addition, this technology allows for truly parallel, high throughput DNA and protein analysis through the development of nanopore and micropore arrays in ultra-thin synthetic membranes. This chapter is focused on the development of solid-state nanopore sensors in synthetic membranes and the potential benefits and challenges associated with this technology. Biological nanopores, primarily α-hemolysin and the phi29 connector are also reviewed. We conclude with a detailed discussion on chemically modified solid-state nanopores. These surface functionalized nanopore sensors combine the stability and versatility of solid-state nanopores with the sensitivity and selectivity of biological nanopore systems and may play an important role in drug screening and medical diagnostics.Keywordsα-hemolysinphi29Nanopores in Al2O3 MembranesSurface Charges in NanoporesSurface Enhanced DNA Transport

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call