Abstract

Thermal design requirements are mostly driven by the peak temperatures. Reducing or eliminating hot spots could alleviate the design requirement for the whole package. Combination of solid-state and liquid cooling will allow removal of both hot spots and background heating. In this paper, we analyze the performance of thin film Bi2Te3 microcooler and the 3D SiGe based microrefrigerator and optimize the maximum cooling and cooling power density in the presence of flow. Liquid flow and heat transfer coefficient will change the background temperature of the chip but they also affect the performance of the solid-state coolers used to remove hot spots. Both Peltier cooling at interfaces and Joule heating inside the device could be affected by the fluid flow. We analyze conventional Peltier coolers as well as 3D coolers. We study the impact of various parameters such as thermoelectric leg thickness, thermal interface resistances, and geometry factor on the overall system performance. We find that the cooling of conventional Peltier cooler is significantly reduced in the presence of fluid flow. On the other hand, 3D SiGe can be effective to remove high power density hot spots up to 500 W/cm2. 3D microrefrigerators can have a significant impact if the thermoelectric figure-of-Thermal design requirements are mostly driven by the peak temperatures. Reducing or eliminating hot spots could alleviate the design requirement for the whole package. Combination of solid-state and liquid cooling will allow removal of both hot spots and background heating. In this paper, we analyze the performance of thin film Bi2Te3 microcooler and the 3D SiGe based microrefrigerator and optimize the maximum cooling and cooling power density in the presence of flow. Liquid flow and heat transfer coefficient will change the background temperature of the chip but they also affect the performance of the solid-state coolers used to remove hot spots. Both Peltier cooling at interfaces and Joule heating inside the device could be affected by the fluid flow. We analyze conventional Peltier coolers as well as 3D coolers. We study the impact of various parameters such as thermoelectric leg thickness, thermal interface resistances, and geometry factor on the overall system performance. We find that the cooling of conventional Peltier cooler is significantly reduced in the presence of fluid flow. On the other hand, 3D SiGe can be effective to remove high power density hot spots up to 500 W/cm2. 3D microrefrigerators can have a significant impact if the thermoelectric figure-of-merit, ZT, could reach 0.5 for a material grown on silicon substrate. It is interesting to note that there is an optimum microrefrigerator active region thickness that gives the maximum localized cooling. For liquid heat transfer coefficient between 5000 and 20000 W/m2/K, the optimum is found to be between 10 and 20 mum.merit, ZT, could reach 0.5 for a material grown on silicon substrate. It is interesting to note that there is an optimum microrefrigerator active region thickness that gives the maximum localized cooling. For liquid heat transfer coefficient between 5000 and 20000 W/m2/K, the optimum is found to be between 10 and 20 mum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.