Abstract

Emergence of thermoresponsive and reversible color changes at low temperature is a challenging target. In general, it is not easy to induce sufficient dynamic motion of rigid molecules including chromophore at a lower temperature. The present work shows unusually low-temperature color-change properties originating from the dynamic motion of rigid conjugated polymer in solid state. The layered composites of polydiacetylene (PDA) and guest l-arginine (L-Arg) (PDA-(L-Arg)) exhibit temperature-responsive gradual color changes with reversibility in the range of 123-333 K in solid crystalline state. The dynamic properties are induced by gradual and reversible distortion of the π-conjugated main chain in response to temperature. The tuned flexibility of the layered structure facilitates motion of the rigid π-conjugated molecule at low temperature. The PDA-(L-Arg)-coated substrates are applied to visualization and quantification of 2D and 3D temperature distributions generated by cooling with liquid nitrogen. These thermographic devices afford to image lower temperature range than typical infrared thermography. The present work indicates potentials of layered architectures with tunable flexibility for emergence of dynamic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.