Abstract

Solid-state anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. Some advantages of SS-AD include smaller reactor capacity requirements, less energy used for heating, and no processing energy needed for stirring. Due to its lower water content, the digestate of SS-AD is much easier to handle than the effluent of liquid AD. However, SS-AD systems also have disadvantages such as larger amounts of required inocula and much longer retention time.The principles and applications of the SS-AD process are reviewed in this paper. The variation in biogas production yields of different feedstocks is discussed as well as the need for pretreatment of lignocellulosic biomass to enhance biogas production. The effects of major operational parameters, including C/N ratio, solids content, temperature, and inoculation on the performance of SS-AD are summarized. While an increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content, may increase the biogas yield but have negative impact on production efficiency. Different reactor configurations used in current commercial scale SS-AD systems and the impact of economics on system selection are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call