Abstract

Mixed-flow dryers are broadly used in worldwide agriculture for the drying of grain, corn and rice but are also applied in industry. Although this drying process is well established, there is still a need to optimize the dryer apparatus. Unfavorable design can cause uneven mass flow and air flow distributions, broad residence time distributions and, hence, inhomogeneous drying histories of the particles resulting in non-uniform drying. The transport of solids in mixed-flow dryers has not yet been sufficiently considered and investigated. Therefore, the objective of this study is to derive basic equations on particle flow in mixed-flow dryers which are practically operated in the interrupted flow regime and equipped with discharge gates. The function of the discharge gate, the discharge characteristic and the solids mass flow rate were studied by varying the discharge and standstill times, respectively. The experiments were conducted at a semi-technical dryer test station with a transparent acrylic glass front wall using wheat as bed material. The fundamentals developed serve as a basis for further theoretical and experimental investigations. The future goal is to improve apparatus design and process control so as to homogenize the drying process, to increase energy efficiency and to save product quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.