Abstract

Phosphopeptides are a useful tool for the investigation of phosphorylation as a reversible posttranslational modification. There is a growing interest in using mimics of phosphoamino acids involved in phosphorylation in order to study the enzymes concerned in these processes. These mimics should contain a non-hydrolysable or isoelectrically modified phosphate moiety to be used as a specific inhibitor of phosphatases and kinases. We introduce sold-phase synthesis of H- and methylphosphonopeptides as a new class of mimics of phosphotyrosyl peptides. The peptides were synthesized on solid phase using the standard fluorenyl-methyloxycarbonyl (Fmoc) strategy. Tyrosine residues were incorporated as allyl-protected derivatives, which were selectively deprotected on the resin by treatment with Pd(PPh3)4. The peptide resin carrying the side-chain unprotected tyrosine of the model peptide Gly-Gly-Tyr-Ala was phosphonylated with di-tert-butyl-N,N-diethyl-phosphoramidite in the presence of 1H-tetrazole, yielding H-phosphonopeptides after trifluoroacetic acid (TFA) cleavage. Alternatively, phosphonylation of the unprotected tyrosine with O-tert-butyl-N,N-diethyl-P-methylphosphonamidite catalysed by 1H-tetrazole and followed by oxidation led to the methyphosphonopeptides after TFA cleavage. We obtained both the H-phosphonopeptides and the methylphosphonopeptides of the tetrapeptide in high yields and purities above 90%, according to reversed-phase high-performance liquid chromatography (RP-HPLC). To investigate the general applicability of our new methodology, we synthesized phosphonopeptides up to 13 amino acids long, corresponding to recognition sequences of tyrosine kinases. After cleavage and deprotection, all phosphonopeptides were obtained in high yields and purities of about 90%, as shown by mass spectrometry. The only by-product found was the unmodified peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.