Abstract

We describe the preparation, characterization, and application of a composite film adsorbent based on blended agarose-chitosan-multiwalled carbon nanotubes for the preconcentration of selected nonsteroidal anti-inflammatory drugs in aqueous samples before determination by high performance liquid chromatography with ultraviolet detection. The composite film showed a high surface area (4.0258m2 /g) and strong hydrogen bonding between the multiwalled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long-term stability. Several parameters, such as sample pH, addition of salt, extraction time, desorption solvent, and concentration of multiwalled carbon nanotubes in the composite film were optimized using a one-factor-at-time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10mL of sample solution at pH 2, extraction time of 30min, stirring speed of 600rpm, 100μL of isopropanol as desorption solvent, desorption time of 5min under ultrasonication, and 0.4% w/v of composite film. Under the optimized conditions, the calibration curve showed good linearity in the range of 1-500ng/mL (r2 =0.997-0.999), and good limits of detection (0.89-8.05ng/mL) were obtained with good relative standard deviations of <4.59% (n=3) for the determination of naproxen, diclofenac sodium salt, and mefenamic acid drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call